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Interaction of a relaxing system with a dynamical environment
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It is shown that nonlinear interactions with a dynamical environment are able to transform the micro-
scopic trajectories of a relaxing system to evolve as a time-dependent multiplicative process. When aver-
aged over an ensemble of such trajectories, a nonexponential response with a scaled relaxation time is
generated. Similar features have been observed for dispersive transport and relaxation in experiments
and simulations of interacting constituents in condensed matter. This new class of statistical-mechanical
systems is illustrated using a Hamiltonian-driven damped Fermi accelerator and an asymmetrically

damped stadium billiard.
PACS number(s): 05.40.+j, 05.45.+b, 02.50.—r

There has been a considerable recent growth of
research activities concerned with relaxation and trans-
port in condensed-matter systems, such as amorphous
and porous materials, glass-forming viscous liquids, vitre-
ous ionic conductors, and entangled polymer melts [1].
The approach to equilibrium is generally characterized
by (a) time-dependent linear responses such as dispersive
transport and nonexponential correlation functions, and
by (b) anomalous dependence of the transport or relaxa-
tion time on a number of experimental variables. It is be-
lieved these features are due both to the effects of dynam-
ical interactions between the relevant degrees of freedom
and to the effects of the static disorder of the material.
This has led to numerous recent theoretical and numeri-
cal investigations of model systems which contain
dynamical interactions or disorder. For example, recent
large-scale computer simulations of glass-forming poly-
mers [2,3] and liquids [4], ionically conducting lattices
[5], and entangled polymer chains [6] explicitly contain
both nonlinear interactions (e.g., Lennard-Jones, hard-
core, Coulomb, etc.) with the relaxing degrees of freedom
and thermal bath effects. The results of these simulations
are able to reproduce features (a) and (b) as observed in
experimental data. These observed features of both ex-
periments and numerical computations are concisely
summarized by a macroscopic description and interpreta-
tion of relaxation developed by Ngai and co-workers
[7-11], often designated as the “coupling model.” It has
been found from both experiments and simulation that
the relaxation of the individual constituents becomes
slowed down after a time scale 7., mainly due to the
dynamical interactions, and must then be described by
nonexponential response functions [feature (a)] with
characteristic scaled rate parameters [feature (b)]. These
observations can be efficiently and accurately
parametrized by the equations of the coupling model [see
Egs. (3) and (4) below]. The repeated success of this
description of both experiments and simulations provides
evidence that the essential features of relaxation in these
systems are determined mainly by the effects of dynami-
cal interactions involving the relaxing degrees of free-
dom, with static material disorder often playing a secon-
dary role.

However, it has been difficult to understand in detail
how these observed features emerge in the simulations of
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these complicated interacting statistical-mechanical sys-
tems from the properties of dynamically interacting de-
grees of freedom and statistical mechanics. It would
therefore be useful to isolate specific dynamical and
statistical-mechanical mechanisms that can exhibit simi-
lar properties and yet can be analyzed in detail. A num-
ber of mechanisms for the modification of transport and
relaxation by static disorder or dynamical effects have
been studied in simple models [12—-16]. These models
contain mechanisms for nonexponential relaxation
[feature (a)] and provide insight into the statistical
mechanics of complex systems. In addition, there are the
mode-coupling theories [17] that provide macroscopic
scaling relations among the a, 3, and other relaxation re-
gimes. However, there are no microscopic models that
also explain the relation between the observed relaxation
time and the microscopic relaxation time [feature (b), Eq.
(4) below], which is essential to describing the systems of
interest here [1-11]. In this paper, we analyze a class of
systems in which thermally relaxing degrees of freedom
are interacting nonlinearly with a dynamical environment
at the microscopic level. The macroscopic response is
found to contain the essential features (a) and (b) ob-
served in the simulations and experiments, as summa-
rized by the coupling model equations, and also provides
insight into how these features emerge from the micro-
scopic trajectories. Two simple examples are analyzed
which contain the ingredients found more generally in
this class of systems.

It has long been known that the phase-space trajec-
tories for Hamiltonians with nonlinear interactions can
exhibit classical chaos at long times. However, it is now
also known that the evolution in time of such trajectories
(for a large class of chaotic Hamiltonians) is comprised of
segments of smooth motion for finite intervals of time
corresponding to approximate invariants of the motion,
sequentially interrupted in time by sudden jumps to other
approximate invariants [18-23]. For example, the route
to chaos in the dynamics of two ions in a radio-frequency
trap has been experimentally found to be due to ion-ion
collisions in which stable single-particle-like motion is oc-
casionally interrupted by jumps to new orbits caused by
the nonlinear Coulomb interaction during close en-
counters [18]. Theoretical and numerical studies [19-23]
have found that, for a large class of nonintegrable Hamil-
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tonians with a variety of nonlinear potentials, there exist
approximate invariants of motion that break down and
become singular only in very localized regions (not neces-
sarily confined to a point) of phase space. These regions
act as “‘scattering centers” in the phase space that inter-
rupt the otherwise smooth trajectories corresponding to
the approximate invariants. The curvature of the
potential-energy surface is negative along a line perpen-
dicular to the flow near these centers so that subsequent
motion is very sensitive to initial conditions there. This
causes the trajectory to make a transition to a new ap-
proximate invariant, which survives until the next
scattering center is encountered. The result of many such
encounters of a trajectory with scattering centers results
in deterministic chaos at long times.

We demonstrate here that such encounters also have
implications for statistical-mechanical systems in which
some of the degrees of freedom are damped by coupling
to a thermal bath. Figure 1 shows two simple examples
of such systems. Figure 1(a) consists of a Brownian point
particle moving in a one-dimensional box along the y
direction. The Brownian particle collides elastically with
a fixed hard wall at one end and has elastic hard-core col-
lisions with an undamped (i.e., Hamiltonian) harmonic
oscillator at the other end. The Brownian particle and
the harmonic oscillator both have unit point mass. This
is analogous to the famous Fermi accelerator [24], except
the oscillating wall here is a Hamiltonian oscillator in-
stead of being externally forced and the particle under-
goes Brownian instead of free motion between collisions.
Figure 1(b) shows the even simpler example of a point
particle moving in a stadium-shaped billiard where
motion in the y direction is Brownian and motion in the x
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FIG. 1. (a) Brownian particle in a box with a harmonically
oscillating wall. (b) Particle in a stadium billiard with Brownian
y motion and free x motion. The Brownian fluctuations are not
visible in the initial behavior of the trajectories shown here be-
cause the average initial particle energy is 500k T.

direction is free for times between elastic collisions with
the boundary. If the Brownian damping and thermal
fluctuations were temporarily turned off, the particle
momentum in the y direction, P,, in each of these exam-
ples would be conserved between collisions. However,
the magnitude of P, is abruptly changed at each collision
with the environment [i.e., the oscillator in Fig. 1(a) or
the curved end of the stadium in Fig. 1(b)]. In the ab-
sence of damping, both examples can exhibit chaos at
long times due to sequential interruptions in time of the
approximate invariant of the motion, P,, due to the
hard-core scattering events. These two examples with
hard-core interactions thus contain the features found
more generally [18-23] for the sequentially interrupted
evolution of trajectories in nonintegrable Hamiltonians,
but are simple enough to be analyzed in detail. If the
Brownian damping and thermal fluctuations are now
turned back on, the particle in both the Hamiltonian-
driven damped Fermi accelerator of Fig. 1(a) and the
asymmetrically damped stadium billiard of Fig. 1(b)
obeys the simple Langevin equation, dP,/dt=—yP,
+F(t), during the time intervals between collisions,
where F(t) represents Gaussian white noise; i.e.,
(F()F(0))=2ykT¥8().

If ¢, is the time of the first collision with the environ-
ment, the solution for Py(t) during this initial time inter-
val is the same as for Brownian motion in a one-
dimensional box with rigid walls [25]. For example, the
energy of the particle, Ey=Py2/2, thermally averaged
over an ensemble of trajectories will initially decay to-
ward equilibrium as an exponential, ¢(¢)=exp(—2yt) for
t <t,, where t,=(t,) is the average time of the first col-
lision. However, subsequent collisions with the environ-
ment will modify the solutions for P,(¢). If the environ-
mental degree of freedom initially has an energy compa-
rable to the Brownian particle, the collisions will repeat-
edly cause significant changes in the particle energy dur-
ing its time evolution. The value of the particle energy
for a single trajectory as a function of time will thus have
a very tortuous appearance. However, the properties of
these trajectories can be shown to be described simply in
terms of time-dependent multiplicative processes. And
averages over ensembles of such trajectories exhibit
smooth behavior and are consistent with the observed
features (a) and (b).

The microscopic trajectories for the models of Fig. 1
can be analyzed most directly from the discrete mapping
of the coordinates and momenta from one collision with
the environment to the next. Although the exact map-
pings for these systems can be studied, and the exact sys-
tems will be discussed below, let us first consider a
simplified version of the mappings for these models in
which the particle exchanges momentum during a col-
lision with the environment, but always at the same fixed
position [e.g, y =0 for Fig. 1(a) and x =x, for Fig. 1(b)].
This is analogous to the simplified Ulam map for the
standard Fermi accelerator [24]. We will ignore thermal
fluctuations for these simplified maps so that the energy
decays toward zero instead of kT /2. These simplified
maps contain the essential features of the exact models
but simplify the discussion considerably. If the phase of
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the dynamical environment changes rapidly between col-
lisions, it can be approximated as being random. For the
simplified maps, there is no phase dependence for the po-
sition at each collision and an average over the random
phase can be done directly. This results in a map for the
particle energy for t>t;, at each collision with the
dynamical environment, for the Hamiltonian-driven
damped Fermi accelerator of Fig. 1(a):

E,(i+1)=[E,()+E,(i —exp(—2yA,_)1/2, (1)

and for the asymmetrically damped stadium billiard of
Fig. 1(b):

E,(i +1)=E,(i)[1+exp(—2yA;)1/2, 2)

where the collisions take place at times ¢; and the interval
between collisions, A;=t;,,—¢;, is determined self-
consistently by the dynamics of each model. In Eq. (1),
the oscillator energy is given by E(/)=2E,(i +1), and
in Eq. (2), the energy for the x motion is given by
E,(i)=E,(i). These maps take the form of averages of a
damped and an undamped term because the damped
Brownian particle exchanges energy with the undamped
environment. The A; will change with time, increasing
on average, as the Brownian particle slows, because it
takes longer to return to the oscillator or curved stadium
wall. Equations (1) and (2) thus take the form of time-
dependent multiplicative processes that clearly must de-
cay slower than exp(—2yt) (which is the decay had there
been no interaction with the dynamical environment).
The nature of this nonexponential decay is most clearly
seen in the average behavior of the trajectories.

Numerical solutions of the exact equations of motion
of the two models for the decay of the energy of the
Brownian particle averaged over a Gaussian ensemble of
initial momenta and over thermal noise are shown in
Figs. 2 and 3. In these examples, the initial energies of
the Brownian particle and the dynamical environment
were chosen to be equal and the Brownian damping con-
stant ¥ was chosen small enough so that many collisions
would occur before equilibrium with the thermal bath
was attained. As seen in Figs. 2 and 3, the effect of the
environmental collisions is to transform an initial ex-
ponential decay of the energy for ¢ <t., with the relaxa-
tion time 7o=1/(2y), to a nonexponential decay with a
larger relaxation time 7. Here ¢, is the average time of
first collision. For ¢ >¢,, the decay function undergoes a
brief transient and then settles down to a smooth nonex-
ponential function that, in these examples, can be approx-
imated by a stretched exponential with a scaled relaxa-
tion time as shown by the solid lines in Figs. 2 and 3.
The normalized time-dependent decay can be
parametrized approximately as

exp[ —t /7], t<t,. (3a)
= exp[— (e /P "], 1>, (3b)
=151 —n)(1o/t, )" ]}/ 7", 4)

The values of the stretching exponent n in Egs. (3b)
and (4) generally depend on the strength and frequency of
the environmental interactions [26]. For the particular
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FIG. 2. Normalized energy decay of the Brownian particle in
the accelerator of Fig. 1(a) showing the transition from ex-
ponential to stretched exponential. Average of 10* trajectories
with y(0)/L =0.5, p,.(0)/L=0, a Gaussian distribution of
P,(0) and P, (0) with average of unity and variance of 0.01;
L =10, 70/t.=9.7, oscillator frequency wt,=15.4, and
kT /2=(E,(0))/1000. Solid lines: fits to Egs. (3) and (4) with
n=0.33.
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FIG. 3. Normalized energy decay of the Brownian motion in
the stadium of Fig. 1(b) showing the transition from exponential
to stretched exponential. Average of 10* trajectories with
y(0)/L =0, x(0)/L =0, a Gaussian distribution of P,(0) and
P,(0) with average of unity and variance of 0.01; L =10
70/t,=11.0, and kT /2={E,(0)) /1000. Solid lines: fits to Egs.
(3) and (4) with n =0.27.
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parameters chosen in these illustrations, the values are
found to be n =~0.33 for the accelerator and n ~0.27 for
the billiard. The approximate parametrization in Eqgs. (3)
and (4) are the equations of the coupling model of Ngai
and co-workers [7—11]. These have been found to accu-
rately and concisely describe the macroscopic relaxation
for many physical systems with interacting constituents
both from experiments [1,7-9] and from computer simu-
lations [9-11] of glasses, polymers, and ionic conductors
[2-6]. The scaling relation for the 7 of the stretched ex-
ponential in Eq. (4) can be understood [7-9] if it is as-
sumed that the rates, W= —¢ 'd¢/dt, for the exponen-
tial, Eq. (3a), and the stretched exponential, Egs. (3b),
match smoothly at ¢ =¢,. This is the case for the models
in Figs. 2 and 3, and Eq. (4) for the scaling of the Browni-
an relaxation time 7, to the nonexponential relaxation
time 7 is obeyed. Although progress has been made in in-
terpreting Eqgs. (3) and (4) [7-9], there has been no
derivation from fundamental principles. However, as
shown here, this behavior is exhibited by relaxing systems
nonlinearly interacting with a dynamical environment
(which can be undamped or weakly damped) as a result of
encounters with phase-space scattering centers. The time
scale ¢, will be generally well defined in this class of sys-
tems because the scattering centers are quite localized in
phase space [18-23]. The microscopic dynamics takes
the form of an interrupted evolution in time described by
a time-dependent multiplicative process. The average
over many trajectories results in a response similar to the
observed macroscopic behavior. It is known that macro-
scopic linear-response behavior is compatible with micro-
scopic nonlinear interactions [27]. The simplified maps
of Egs. (1) and (2) also give behavior similar to Figs. 2

and 3 when averaged over an ensemble of trajectoreis, al-
though the exact solutions more closely approximate the
stretched exponential.

The macroscopic features can be seen to emerge from
the microscopic trajectories due to two interrelated prop-
erties of this class of systems (in the regime of random
phase): (i) the time interval A; between encounters with a
phase-space scattering center is time-dependent (increas-
ing on average) [28], and (ii) each such encounter has a
probability of changing the state of the system. If (i) is
obeyed but not (ii), the energy decays as a simple ex-
ponential with the Langevin relaxation time 7,=1/(2y)
for all times. If (ii) is obeyed but not (i), then the decay
will still be an exponential on average but with a larger
modified relaxation time. For example, if A;=A;=const
for all collisions, then the simplified map of Eq. (2) gives a
simple exponential but with 7=27, (if A, /79<<1). With
both (i) and (ii), the relaxation following the initial envi-
ronmental interaction is both nonexponential and must
have a scaled relaxation time. If the nonexponential de-
cay can be approximated by a stretched exponential, then
Egs. (3) and (4) will provide an accurate description of the
average macroscopic behavior of these systems. The mi-
croscopic time-dependent multiplicative processes result-
ing from interactions with a dynamical environment can
be described more generally by a scattering theory for the
propagator of the interacting system in terms of the
noninteracting propagator, the probability of encounter-
ing the next scattering center, and the state transition
operator due to the scattering [26].
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